LT6552

3.3V Single Supply

 Video Difference Amplifier
feATURES

- Differential or Single-Ended Gain Block
- Wide Supply Range 3V to 12.6V
- Output Swings Rail-to-Rail
- Input Common Mode Range Includes Ground
- 600V/us Slew Rate
- -3dB Bandwidth $=75 \mathrm{MHz}, A_{V}= \pm 2$
- CMRR at $10 \mathrm{MHz}:>60 \mathrm{~dB}$
- Specified on $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ Supplies
- High Output Drive: $\pm 70 \mathrm{~mA}$
- Power Shutdown to $300 \mu \mathrm{~A}$
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Available in 8-Lead SO and

Tiny $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ DFN Packages

APPLICATIONS

- Differential to Single-Ended Conversion
- Video Line Driver
- Automotive Displays
- RGB Amplifiers
- Coaxial Cable Drivers
- Low Voltage High Speed Signal Processing

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 6552$ is a video difference amplifier optimized for low voltage single supply operation. This versatile amplifier features uncommitted high input impedance (+) and $(-)$ inputs and can be used in differential or single-ended configurations. A second set of inputs gives gain adjustment and DC control to the differential amplifier.

On a single 3.3 V supply, the input voltage range extends from ground to 1.3 V and the output swings from ground to 2.9 V while driving a 150Ω load. The LT6552 features $75 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth, $600 \mathrm{~V} / \mu \mathrm{s}$ slew rate, and $\pm 70 \mathrm{~mA}$ output current making it ideal for driving cables directly. The LT6552 maintains its performance for supplies from 3 V to 12.6 V and is fully specified at $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ supplies. The shutdown feature reduces power dissipation to less than 1 mW and allows multiple amplifiers to drive the same cable.

The LT6552 is available in the 8-lead S0 package as well as a tiny, dual fine pitch leadless package (DFN). The device is specified over the commercial and industrial temperature ranges.

[^0]
TYPICAL APPLICATION

Cable Sense Amplifier for Loop Through Connections with DC Adjust

ABSOLUTE MAXIMUM RATINGS
 (Note 1)

Supply Voltage (V^{+}to V^{-})
\qquad
12.6 V

Input Current (Note 2) \qquad $\stackrel{.}{ \pm 10 \mathrm{~mA}} \mathrm{~V}^{-}$to V^{+}
Input Voltage Range V^{-}to V^{+}
Differential Input Voltage

+ Input (Pin 3) to -Input (Pin 2) \qquad
\qquad
\qquad $\pm V_{S}$ Output Short-Circuit Duration (Note 3).............Indefinite Operating Temperature Range (Note 4) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Specified Temperature Range (Note 5).... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$Maximum Junction Temperature $150^{\circ} \mathrm{C}$
(DD Package) $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
(DD Package) $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature(Soldering, 10 sec)$300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER	TOP VIEW	ORDER PART NUMBER
REF ${ }^{-1}$		ReF 1 - $8^{8} \mathrm{FB}$	
$-\mathrm{IN}$	LT6552IDD	$-1 \mathrm{~L}$	$\begin{aligned} & \text { L6552CS8 } \\ & \text { LT6552IS8 } \end{aligned}$
$\begin{gathered} \text { DD PACKAGE } \\ \text { 8-LEAD }(3 \mathrm{~mm} \times 3 \mathrm{~mm}) \text { PLASTIC DFN } \\ \text { TJMAX }=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=160^{\circ} \mathrm{C} / \mathrm{W} \\ \text { UNDERSIDE METAL CONNETED TO } \mathrm{V}^{-} \\ \text {(PCB CONNECTION OPTIONAL) } \end{gathered}$	DD PART MARKING*	S8 Package 8-LEAD PLASTIC SO $\mathrm{T}_{\mathrm{JMax}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} \mathrm{C}$	S8 PART MARKING
	LADR		6552
			65521

*The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.

3.3V ELECTRICAL CHARACTERISTICS

The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}$, 0 V . Figure 1 shows the DC test circuit, $V_{\text {REF }}=V_{C M}=1 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=0 \mathrm{~V}, \mathrm{~V}_{\overline{\text { SHDN }}}=\mathrm{V}^{+}$, unless otherwise noted. $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{F}}+\mathrm{R}_{\mathrm{G}}=1 \mathrm{k}$. (Note 6)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAAX	UNITS
$V_{\text {OS }}$	Input Offset Voltage	Both Inputs (Note 7)	5	20	mV	
			\bullet		25	mV
$\Delta V_{O S} / \Delta T$	Input $V_{\text {OS }}$ Drift		\bullet	40	$\mu V /{ }^{\circ} \mathrm{C}$	
I_{B}	Input Bias Current	Any Input	\bullet	20	50	$\mu \mathrm{~A}$
$I_{\text {OS }}$	Input Offset Current	Either Input Pair	\bullet	1	5	$\mu \mathrm{~A}$

3.3V ELECTRICAL CHARACTERISTICS The \bullet denotes the speciifications which apply vere the full

 operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}$, 0 V . Figure 1 shows the DC test circuit, $V_{\text {REF }}=\mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=\mathbf{O V}, \mathrm{V}_{\overline{\text { SHDN }}}=\mathrm{V}^{+}$, unless otherwise noted. $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{F}}+\mathrm{R}_{\mathrm{G}}=1 \mathrm{k}$. (Note 6)| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| e_{n} | Input Noise Voltage Density | $\mathrm{f}=10 \mathrm{kHz}$ | | | 55 | | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| in_{n} | Input Noise Current Density | $f=10 \mathrm{kHz}$ | | | 0.7 | | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |
| $\underline{\mathrm{R}_{\text {IN }}}$ | Input Resistance | Common Mode, $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$ to 1.3V | | | 300 | | $\mathrm{k} \Omega$ |
| CMRR | Common Mode Rejection Ratio | $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$ to 1.3V | \bullet | 58 | 83 | | dB |
| | Input Range | | - | 0 | | 1.3 | V |
| PSRR | Power Supply Rejection | $\mathrm{V}_{S}=3 \mathrm{~V}$ to 12V | \bullet | 48 | 54 | | dB |
| | Minimum Supply (Note 8) | | \bullet | 3 | | | V |
| G_{E} | Gain Error | $\begin{aligned} V_{0}=0.5 \mathrm{~V} \text { to } 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} & =1 \mathrm{k} \\ \mathrm{R}_{\mathrm{L}} & =150 \Omega \end{aligned}$ | $\bullet \bullet$ | | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 3 \\ & 3 \end{aligned}$ | \% |
| V_{OH} | Swing High | $\begin{aligned} & \left(\mathrm{V}_{\text {DIFF }}=0.4 \mathrm{~V}\right), \mathrm{V}_{\text {REF }}(\text { Pin } 1)=0 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=10 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega \end{aligned}$ | \bullet | 3.1 2.5 2 | $\begin{aligned} & 3.2 \\ & 2.9 \\ & 2.5 \\ & \hline \end{aligned}$ | | V |
| $\mathrm{V}_{\text {OL }}$ | Swing Low | $\begin{aligned} & \left(V_{\text {DIFF }}=-0.1 \mathrm{~V}\right), \mathrm{V}_{\text {REF }}(\operatorname{Pin} 1)=0 \mathrm{~V}, A_{V}=10 \\ & R_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{I}_{\text {IINK }}=5 \mathrm{~mA} \\ & I_{\text {SINK }}=10 \mathrm{~mA} \end{aligned}$ | $\stackrel{\bullet}{\bullet}$ | | $\begin{gathered} 8 \\ 65 \\ 40 \end{gathered}$ | $\begin{gathered} 50 \\ 120 \\ 200 \end{gathered}$ | mV mV mV |
| SR | Slew Rate | $\begin{aligned} & V_{\text {OUT }}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \text { Measure from } 1 \mathrm{~V} \text { to } 2 \mathrm{~V} \text {, } \\ & R_{L}=150 \Omega, A_{V}=2 \end{aligned}$ | | | 350 | | V/ $/ \mathrm{s}$ |
| FPBW | Full-Power Bandwidth (Note 9) | $V_{0}=2 V_{\text {P-P }}$ | | | 55 | | MHz |
| BW | Small-Signal -3dB Bandwidth | $A_{V}=2, R_{L}=150 \Omega$ | | | 65 | | MHz |
| $\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$ | Rise Time, Fall Time (Note 10) | $\begin{aligned} & A_{V}=50, V_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \\ & 20 \% \text { to } 80 \%, R_{L}=150 \Omega \end{aligned}$ | | | 125 | 175 | ns |
| t_{5} | Settling Time to 3\% Settling Time to 1% | $\begin{aligned} & A_{V}=2, \Delta V_{\text {OUT }}=2 V \text {, Positive Step } \\ & R_{L}=150 \Omega \end{aligned}$ | | | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ | | ns ns |
| | Differential Gain | $A_{V}=2, R_{L}=150 \Omega$, Output Black Level $=0.6 \mathrm{~V}$ | | | 0.4 | | \% |
| | Differential Phase | $A_{V}=2, R_{L}=150 \Omega$, Output Black Level $=0.6 \mathrm{~V}$ | | | 0.15 | | Deg |
| $I_{\text {SC }}$ | Short-Circuit Current | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=1 \mathrm{~V}$ | \bullet | $\begin{aligned} & 35 \\ & 25 \end{aligned}$ | 50 | | mA |
| IS | Supply Current | | \bullet | | 12.5 | $\begin{gathered} 13.5 \\ 15 \\ \hline \end{gathered}$ | mA mA |
| | Supply Current, Shutdown | $V \overline{S H D N}=0.5 \mathrm{~V}$ | \bullet | | 300 | 750 | $\mu \mathrm{A}$ |
| V_{L} | Shutdown Pin Input Low Voltage | | \bullet | | | 0.5 | V |
| V_{H} | Shutdown Pin Input High Voltage | | \bullet | 3 | | | V |
| | Shutdown Pin Current | $\begin{aligned} & V \overline{S H D N}=0.5 \mathrm{~V} \\ & V \overline{S H D N}=3 \mathrm{~V} \end{aligned}$ | \bullet | | $\begin{gathered} 40 \\ 3 \end{gathered}$ | $\begin{gathered} 150 \\ 10 \end{gathered}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| t_{ON} | Turn On-Time | V SHDN from 0.5 V to 3 V | | | 250 | | ns |
| toff | Turn Off-Time | $\mathrm{V}_{\text {SHDN }}$ from 3 V to 0.5 V | | | 450 | | ns |
| | Shutdown Output Leakage Current | $\mathrm{V}_{\overline{\text { SHDN }}}=0.5 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}^{+}$ | \bullet | | 0.25 | | $\mu \mathrm{A}$ |

$5 V$ ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V}$; Figure 1 shows the DC test circuit,
$V_{\text {REF }}=V_{\text {CM }}=1 V, V_{\text {DIFF }}=0 V, V_{S H D N}=V^{+}$, unless otherwise noted. $R_{L}=R_{F}+R_{G}=1 \mathrm{k}$. (Note 6)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	Both Inputs (Note 7)	-		5	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	mV mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Input $\mathrm{V}_{\text {OS }}$ Drift		\bullet		40		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	Any Input	\bullet		20	50	uA
IOS	Input Offset Current	Either Input Pair	\bullet		1	5	uA
e_{n}	Input Noise Voltage Density	$\mathrm{f}=10 \mathrm{kHz}$			55		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=10 \mathrm{kHz}$			0.7		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Common Mode, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 3 V			300		$\mathrm{k} \Omega$
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$ to 3 V	\bullet	58	83		dB
	Input Range		\bullet	0		3	V
PSRR	Power Supply Rejection	$\mathrm{V}_{S}=3 \mathrm{~V}$ to 12 V	\bullet	48	54		dB
	Minimum Supply (Note 8)		\bullet	3			V
G_{E}	Gain Error	$\begin{aligned} \mathrm{V}_{0}=0.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} & =1 \mathrm{k} \\ \mathrm{R}_{\mathrm{L}} & =150 \Omega \end{aligned}$	\bullet		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	\%
V_{OH}	Swing High	$\begin{aligned} & \left(V_{\text {DIFF }}=0.6 \mathrm{~V}\right), V_{\text {REF }}(\text { Pin } 1)=0 \mathrm{~V}, A_{V}=10 \\ & R_{L}=1 \mathrm{k} \\ & R_{L}=150 \Omega \\ & R_{L}=75 \Omega, 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \text { (0nly) } \end{aligned}$	\bullet	$\begin{aligned} & 4.8 \\ & 3.6 \end{aligned}$ 2.75	$\begin{gathered} 4.875 \\ 4.3 \\ 3.4 \end{gathered}$		V V V
$\mathrm{V}_{0 \mathrm{~L}}$	Swing Low	$\begin{aligned} & \left(\mathrm{V}_{\text {DIFF }}=-0.1 \mathrm{~V}\right), \mathrm{V}_{\text {REF }}(\text { Pin } 1)=0 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=10 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{I}_{\text {SINK }}=5 \mathrm{~mA} \\ & I_{\text {SINK }}=10 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{gathered} 8 \\ 65 \\ 110 \end{gathered}$	$\begin{gathered} 50 \\ 120 \\ 200 \end{gathered}$	mV mV mV
SR	Slew Rate	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ to 3.5 V Measure from 1 V to $3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~A}_{V}=2$			450		V/us
FPBW	Full-Power Bandwidth (Note 9)	$V_{0}=2 V_{\text {P-P }}$			70		MHz
BW	Small-Signal -3dB Bandwidth	$A_{V}=2, R_{L}=150 \Omega$			70		MHz
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	$\begin{aligned} & 5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{A}_{\mathrm{V}}=50, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \text {, } \\ & 20 \% \text { to } 80 \%, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$			125	175	ns
ts	Settling Time to 3\% Settling Time to 1%	$\begin{aligned} & A_{V}=2, \Delta V_{\text {OUT }}=2 V \text {, Positive Step } \\ & R_{L}=150 \Omega \end{aligned}$			$\begin{aligned} & 20 \\ & 30 \end{aligned}$		ns ns
	Differential Gain	$A_{V}=2, R_{L}=150 \Omega$, Output Black Level $=1 \mathrm{~V}$			0.25		\%
	Differential Phase	$A_{V}=2, R_{L}=150 \Omega$, Output Black Level $=1 \mathrm{~V}$			0.04		Deg
ISC	Short-Circuit Current	$\begin{aligned} & V_{\text {OUT }}=0 V, V_{\text {DIFF }}=1 V \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	50 45 35	70		mA mA mA
Is	Supply Current		\bullet		13.5	$\begin{gathered} 14.5 \\ 16 \end{gathered}$	mA
	Supply Current Shutdown	$V^{\text {SHDN }}=0.5 \mathrm{~V}$	\bullet		400	900	$\mu \mathrm{A}$
$\underline{V_{L}}$	Shutdown Pin Input Low Voltage		\bullet			0.5	V
V_{H}	Shutdown Pin Input High Voltage		\bullet	4.7			V
	Shutdown Pin Current	$\begin{aligned} & V \overline{\mathrm{SHDN}}=0.5 \mathrm{~V} \\ & \mathrm{~V} \overline{\mathrm{SHDN}}=4.7 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 60 \\ 4 \end{gathered}$	$\begin{gathered} 200 \\ 10 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

$5 V$ ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the tull operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{S}=5 \mathrm{~V}$, 0 V . Figure 1 shows the DC test circuit, $\mathrm{V}_{\text {REF }}=\mathrm{V}_{C M}=1 \mathrm{~V}$, $V_{\text {DIFF }}=0 V, V_{\text {SHDN }}=V^{+}$, unless otherwise noted. $R_{L}=R_{F}+R_{G}=1 k$. (Note 6)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
t_{ON}	Turn-On Time	$\mathrm{V} \overline{\text { SHDN }}$ from 0.5 V to 4.7V			250		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$\mathrm{V}_{\text {SHDN }}$ from 4.7 V to 0.5 V			450		ns
	Shutdown Output Leakage Current	$\mathrm{V}^{\text {SHDN }}=0.5 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}^{+}$	\bullet		0.25		$\mu \mathrm{A}$

$\pm 5 V$ ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$. Figure 2 shows the DC test circuit, $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$, $V_{\text {DIFF }}=0 V, V_{\overline{S H D N}}=V^{+}$, unless otherwise noted. $R_{L}=R_{F}+R_{G}=1 \mathrm{k}$. (Note 6)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$V_{0 S}$	Input Offset Voltage	Both Inputs (Note 7)	\bullet		10	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	mV mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Input $\mathrm{V}_{\text {OS }}$ Drift		\bullet		50		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IB	Input Bias Current	Any Input	\bullet		25	50	$\mu \mathrm{A}$
Ios	Input Offset Current	Either Input Pair	\bullet		1	5	$\mu \mathrm{A}$
e_{n}	Input Noise Voltage Density	$f=10 \mathrm{kHz}$			55		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Input Noise Current Density	$f=10 \mathrm{kHz}$			0.7		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Common Mode, $\mathrm{V}_{\mathrm{CM}}=-5 \mathrm{~V}$ to 3V			300		k Ω
CMRR	Common Mode Rejection Ratio	$V_{C M}=-5 \mathrm{~V}$ to 3 V	\bullet	58	75		dB
	Input Range		\bullet	-5		3	V
PSRR	Power Supply Rejection	$\mathrm{V}_{\mathrm{S}}= \pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=0 \mathrm{~V}$	\bullet	48	54		dB
GE_{E}	Gain Error	$\begin{aligned} & V_{0}=-3 V \text { to } 3 V, R_{L}=1 \mathrm{k} \\ & R_{L}=150 \Omega \\ & \hline \end{aligned}$	\bullet		$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & \hline \end{aligned}$	\%
	Output Voltage Swing	$\begin{aligned} & \left(V_{\text {DIFF }}= \pm 0.6 \mathrm{~V}\right), \mathrm{V}_{\text {REF }}(\text { Pin } 1)=0 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=10 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \left.R_{L}=75 \Omega, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C} \text { (Only }\right) \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} \pm 4.8 \\ \pm 3.6 \\ \pm 2.75 \end{gathered}$	$\begin{gathered} \pm 4.875 \\ \pm 4.3 \\ \pm 3.4 \end{gathered}$		V V V
SR	Slew Rate	$\begin{aligned} & V_{C M}=0 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-1.5 \mathrm{~V} \text { to }+1.5 \mathrm{~V}, \\ & \mathrm{~V}_{0}=-5 \mathrm{~V} \text { to } 5 \mathrm{~V} \text { Measure from }-2 \mathrm{~V} \text { to } 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$		400	600		V/us
FPBW	Full-Power Bandwidth	$\mathrm{V}_{0}=6 \mathrm{~V}_{\text {P-p }}$ (Note 9)			30		MHz
BW	Small-Signal -3dB Bandwidth	$A_{V}=2, R_{L}=150 \Omega$			75		MHz
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	$A_{V}=50, V_{0}=-3 \mathrm{~V}$ to $3 \mathrm{~V}, 20 \%$ to 80%			125	175	ns
$\mathrm{t}_{\text {s }}$	Settling Time to 3\% Settling Time to 1%	$\begin{aligned} & A_{V}=2, \Delta V_{\text {OUT }}=6 \mathrm{~V} \text {, Positive Step } \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$			$\begin{aligned} & 25 \\ & 35 \end{aligned}$		ns ns
	Differential Gain	$A_{V}=2, R_{L}=150 \Omega$, Output Black Level $=0 \mathrm{~V}$			0.2		\%
	Differential Phase	$A_{V}=2, R_{L}=150 \Omega$, Output Black Level $=0 \mathrm{~V}$			0.15		Deg
ISC	Short-Circuit Current	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V}, V_{\text {DIFF }}= \pm 1 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 50 \\ & 45 \\ & 35 \end{aligned}$	70		mA mA mA
	Supply Current Shutdown	$\mathrm{V}_{\overline{\text { SHDN }}}=-4.5 \mathrm{~V}$	\bullet		650	1400	$\mu \mathrm{A}$
I_{S}	Supply Current		\bullet		14	$\begin{aligned} & 16.5 \\ & 18.5 \end{aligned}$	mA
$\underline{V_{L}}$	Shutdown Pin Input Low Voltage		\bullet			-4.5	V
V_{H}	Shutdown Pin Input High Voltage		\bullet	4.7			V

$\pm 5 V$ ELECTRICAL CHARACTERISTICS The e denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$. Figure 2 shows the DC test circuit, $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$, $V_{\text {DIFF }}=0 V, V_{\text {SHDN }}=V^{+}$, unless otherwise noted. $R_{L}=R_{F}+R_{G}=1 \mathrm{k}$. (Note 6)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
	Shutdown Pin Current	$\begin{aligned} & V_{\overline{\text { SHDN }}}=-4.5 \mathrm{~V} \\ & V_{\overline{S H D N}}=4.7 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 85 \\ 3 \end{gathered}$	$\begin{gathered} 250 \\ 10 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
t_{ON}	Turn-On Time	$\mathrm{V}_{\text {SHDN }}$ from -4.5 V to 4.7 V			200		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$V_{\text {SHDN }}$ from 4.7V to -4.5V			400		ns
	Shutdown Output Leakage Current	$\mathrm{V}_{\text {SHDN }}=-4.5 \mathrm{~V}, \mathrm{~V}^{-} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}^{+}$	\bullet		0.25		$\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The inputs are protected from ESD with diodes to the supplies.
Note 3: A heat sink may be required to keep the junction temperature below absolute maximum.
Note 4: The LT6552C/LT6552I are guaranteed functional over the temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 5: The LT6552C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, but is not tested or QA sampled at these temperatures. The LT6552l is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Figure 1. 3.3V, 5V DC Test Circuit

Note 6: When $R_{L}=1 k$ is specified, the load resistor is $R_{F}+R_{G}$, but when $R_{L}=150 \Omega$ or $R_{L}=75 \Omega$ is specified, then an additional resistor of that value is added to the output.
Note 7: $V_{0 S}$ measured at the output (Pin 6) is the contribution from both input pairs and is input referred.
Note 8: Minimum supply is guaranteed by the PSRR test.
Note 9: Full power bandwidth is calculated from the slew rate.

$$
\mathrm{FPBW}=\mathrm{SR} / 2 \pi \vee \mathrm{p}
$$

Note 10: $\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}$ and t_{f} limits are guaranteed by correlation to $V_{S}=5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ tests.

Figure 2. $\pm 5 \mathrm{~V}$ DC Test Circuit

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PGRFORmANCE CHARACTERISTICS

6552 G25

2nd and 3rd Harmonic Distortion vs Frequency

TYPICAL PGRFORMANCE CHARACTERISTICS

Output Overdrive Recovery

APPLICATIONS INFORMATION

The LT6552 is a video difference amplifier with two pairs of high impedance inputs. The primary purpose of the LT6552 is to convert high frequency differential signals into a single-ended output, while rejecting any common mode noise. In the simplest configuration, one pair of inputs is connected to the incoming differential signal, while the other pair of inputs is used to set amplifier gain and DC level. The device will operate on either single or dual supplies and has an input common mode range which includes the negative supply. The common mode rejection ratio is greater than 60 dB at 10 MHz . Feedback is
applied to Pin 8 and the LT6552's transient response is optimized for gains of 2 or greater.

Figure 3 shows the single supply connection. The amplifier gain is set by a feedback network from the output to Pin 8 (FB). A DC signal applied to Pin 1 (REF) establishes the output quiescent voltage and the differential signal is applied to Pins 2 and 3.

Figure 4 shows several other connections using dual supplies. In each case, the amplifier gain is set by a feedback network from the output to Pin 8 (FB).

Figure 3

Figure 4

APPLICATIONS InFORMATION

Amplifier Characteristics

Figure 5 shows a simplified schematic of the LT6552. There are two input stages; the first one consists of transistors Q1 to Q8 for the (+) and (-) inputs while the second input stage consists of transistors Q9 to Q16 for the reference and feedback inputs. This topology provides high slew rates at low supply voltages. The input common mode range extends from ground to typically 1.75 V from V_{CC}, and is limited by $2 \mathrm{~V}_{\mathrm{BE}}$'s plus a saturation voltage of current sources I1-I4. Each input stage drives the degeneration resistors of PNP and NPN current mirrors, Q17 to Q20, that convert the differential signals into a singleended output. The complementary drive generator supplies current to the output transistors that swing from rail-to-rail.

The current generated through R1 or R2, divided by the capacitor CM, determines the slew rate. Note that this current, and hence the slew rate, are proportional to the magnitude of the input step. The input step equals the output step divided by the closed-loop gain. The highest slew rates are therefore obtained in the lowest gain configurations. The Typical Performance Characteristic Curve of Slew Rate vs Closed-Loop Gain shows the details.

ESD

The LT6552 has reverse-biased ESD protection diodes on all inputs and outputs, as shown in Figure 5. If these pins are forced beyond either supply, unlimited current will flow through these diodes. If the current is transient in nature and limited to 100 mA or less, no damage to the device will occur.

Figure 5. Simplified Schematic

APPLICATIONS INFORMATION

Layout and Passive Components

With a bandwidth of 75 MHz and a slew rate of $600 \mathrm{~V} / \mu \mathrm{s}$, the LT6552 requires special attention to board layout and supply bypassing. Use a ground plane, short lead lengths and RF quality low ESR supply bypass capacitors. The positive supply pin should be bypassed with a small capacitor (typically $0.1 \mu \mathrm{~F}$) within 1 inch of the pin. When driving loads greater than 10 mA , an additional $4.7 \mu \mathrm{~F}$ electrolytic capacitor should be used. When using split supplies, the same is true for the negative supply pin. The parallel combination of the feedback resistor and gain setting resistor on Pin 8 (FB) can combine with the input capacitance to form a pole which can degrade stability. In general, use feedback resistors of 1 k or less.

Operating with Low Closed-Loop Gains

The LT6552 has been optimized for closed-loop gains of 2 or greater. For a closed-loop gain of 2 the response peaks about 3dB. Peaking can be reduced by using low value feedback resistors, and can be eliminated by placing a capacitor across the feedback resistor (feedback zero). Figure 6 shows the closed-loop gain of 2 frequency response with various values of the feedback capacitor. This peaking shows up as a time domain overshoot of 40%; with an 8 pF feedback capacitor the overshoot is eliminated. Figures 7A and 7B show the Small Signal Response of the LT6552 with and without an 8pF feedback capacitor.

Figure 6. Closed-Loop Gain vs Frequency

Figure 7A. Small Signal Transient Response, $\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}$, 0 V

Figure 7B. Small Signal Transient Response, $V_{S}=3.3 \mathrm{~V}$, OV with 8 pF Feedback Capacitor

APPLICATIONS INFORMATION

SHDN Pin

The LT6552 includes a shutdown feature that disables the part, reducing quiescent current and making the output high impedance. The part can be shutdown by bringing the $\overline{\text { SHDN }}$ pin within 0.5 V of V^{-}. When shutdown the supply current is typically $400 \mu \mathrm{~A}$ and the output leakage current
is $0.25 \mu \mathrm{~A}\left(\mathrm{~V}^{-} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}^{+}\right)$. In normal operation the SHDN can be tied to V^{+}or left floating; if the pin is left unconnected, an internal FET pull-up will keep the LT6552 fully operational.

PACKAGE DESCRIPTION

DD Package
8-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-1)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE

PACKAGG DESCRIPTION

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

TYPICAL APPLICATION
$\mathrm{YP}_{\mathrm{B}} \mathrm{P}_{\mathrm{R}}$ to RGB Video Converter

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1193	$A_{V}=2$ Video Difference Amp	$80 M H z$ BW, 500V/ μ s Slew Rate, Shutdown
LT1675	RGB Multiplexer with Current Feedback Amplifiers	$-3 d B$ Bandwidth = 250MHz, 100MHz Pixel Switching
LT6205/LT6206/LT6207	Single/Dual/Quad Single Supply $3 V, 100 M H z ~ V i d e o ~ O p ~ A m p s ~$	$450 \mathrm{~V} / \mu \mathrm{S}$ Slew Rate, Rail-to-Rail Output, Input Common Modes to Ground
LT6550/LT6551	3.3V Triple and Quad Video Amplifiers	Internal Gain of 2, 110MHz -3dB Bandwidth, Input Common Modes to Ground

[^0]: $\overline{\mathbf{\Omega}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

